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Abstract
We study the adsorption problem of a random copolymer on a random surface in
which a self-avoiding walk in three dimensions interacts with a plane defining
a half-space to which the walk is confined. Each vertex of the walk is randomly
labelled A with probability pp or B with probability 1 − pp, and only vertices
labelled A are attracted to the surface plane. Each lattice site on the plane is
also labelled either A with probability ps or B with probability 1 − ps , and
only lattice sites labelled A interact with the walk. We study two variations of
this model: in the first case the A-vertices of the walk interact only with the
A-sites on the surface. In the second case the constraint of selective binding is
removed; that is, any contact between the walk and the surface that involves an
A-labelling, either from the surface or from the walk, is counted as a visit to the
surface. The system is quenched in both cases, i.e. the labellings of the walk and
of the surface are fixed as thermodynamic properties are computed. We present
Monte Carlo simulation results which provide evidence for second-order
transitions in both cases. We observe that in both cases the adsorption location
depends on both ps and pp, the dilution of the interactive sites on the surface
and the walk. We compare critical properties for the two cases and find that the
adsorption location varies for different models while the crossover exponent is
independent of the details of the models.

PACS numbers: 05.10.Ln, 68.43.Mn, 64.60.Ak, 82.70.−y

1. Introduction

The adsorption of polymers at an impenetrable surface is an important problem both in terms of
practical applications and statistical physics of polymers. Adsorption of homopolymers at an
impenetrable surface is a well-studied problem dating back about half a century (for a review
see De’Bell and Lookman (1993)). There have also been studies regarding heteropolymer
adsorption, and in particular copolymer adsorption (in which one of the two comonomers
interacts with the surface) has been studied by a number of experimental (Cosgrove et al 1990),
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theoretical (Sommer and Daoud 1995, Whittington 1998) and computational methods
(Moghaddam et al (2000) and reference cited therein).

The study of random polymers and random surfaces has also received a great deal of
attention. Random copolymers are made up of two different monomer units that are distributed
along the backbone in a random sequence. The disorder contained in these molecules is
quenched; that is, the sequence distribution does not alter in response to prevailing conditions.
They are important models for biological molecules and their adsorption on a homogeneous
surface has been studied by a variety of theoretical and experimental techniques. Some
studies have focused on effects of solvency and coverage (Cosgrove et al 1990), on the effect
of architecture of the polymer on the structure of the adsorbed layer (Balazs and Gempe 1991)
and on the effect of polymer sequence on its statistical behaviour (Denesyuk and Erukhimovich
2000) while others have focused more on the thermodynamic properties of the random
copolymers. In particular, Sumithra and Baumgaertner (1999) used Monte Carlo methods
and scaling arguments to study the critical behaviour of a random copolymer interacting
with an impenetrable surface while Orlandini et al (1999) proved that the system has a
phase transition and is thermodynamically self-averaging. Grosberg and Shakhnovich (1986)
applied advanced renormalization group methods to random chains with a disordered sequence
of links and obtained important information about the thermodynamic properties of an ideal
polymer chain near the transition point. Interesting results have also been obtained for a phase
transition in solid-on-solid models with quenched impurities using perturbation theory as the
basis for a mathematical formulation of the problem (Forgas et al 1991). Other studies include
Garel et al (1990), Moghaddam and Whittington (2002), Gutman and Chakraborty (1994) and
Stepanow and Chudnovskiy (2002) and references cited therein.

These studies deal with the case of a random polymer interacting with a homogeneous
surface. Most surfaces in practice are not homogeneous and include physical/chemical
heterogeneities. The effect of surface roughness on the adsorption problem of polymers
has been studied by various analytical, numerical and experimental methods. These works
followed the pioneering work of Edwards and Muthukumar (1988) who examined the size of
a polymer in a random medium. Baumgaertner and Muthukumar (1991) studied the effect
of physical and chemical roughness by both scaling arguments and Monte Carlo simulations
of a random walk model of the polymer, Gutman and Chakraborty (1995) analysed the
phase diagram of a random heteropolymer near a solid surface by a field theory argument,
Derrida et al (1992) studied the adsorption near a random wall in the context of wetting in two
dimensions using transfer matrix methods and Sumithra and Baumgaertner (1998) examined
the critical properties of a single polymer adsorption onto a random surface by Monte Carlo
simulations and scaling arguments. Other studies include those by Thurtell and Thurtell
(1988), Zajac and Chakrabarti (1997), Baumgaertner (1998) and references cited therein.

The behaviour of random copolymers in random media has been studied in the context of
problems of interest in biology as well as in statistical physics of polymers. In particular, the
adsorption of a random polymer onto a random surface is relevant to the study of behaviour of
proteins near surfaces such as lipid bilayers of the cell membrane (Creighton 1992) and pattern
recognition by macromolecules (Muthukumar 1988). Studies regarding random polymers in
random media include those by Chakraborty et al (1995) who discussed the phase behaviour
of a self-interacting random copolymer in random media, Bratko et al (1997) who studied the
thermodynamics and structural behaviour of random heteropolymers immersed in a disordered
medium, Srebnik (2000) who examined the role of segment interactions in pattern recognition
between random heteropolymers and disordered surfaces and Chakraborty and Bratko (1998)
who studied the recognition between random heteropolymers and disordered surfaces by
Monte Carlo simulations and a nonreplica theory.
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In this work, we study the adsorption problem for random copolymers interacting with
random surfaces via multiple Markov chain Monte Carlo method (MMCMC). This is a
problem of interest in the context of many biological problems such as pattern recognition
by macromolecules. Proteins, for example, bind to certain substrates or surfaces and not
others. The large molecule such as a protein can be modelled by a random copolymer and the
heterogeneous surface of a cell membrane or surface can be modelled by a random surface. It
is of interest to examine which parameters are important in this process. This is also a problem
of interest from the point of view of statistical physics of polymers. Which parameters and
to what extent do they influence the critical properties of the random systems? The critical
exponents are known to be dependent on the dimension of the model. Are they affected by
the details of the model as well? Very little is known about these aspects of the adsorption of
random polymers on random surfaces.

In this work, we consider two variations of a self-avoiding walk model of adsorption of a
random copolymer onto a random surface. We examine the existence of a phase transition and
investigate factors affecting the adsorption location. We also examine the effect of constraint
in the model on critical properties such as the crossover exponent. We comment on the
dependence of these properties on ps and pp, the dilution of interactive sites on the surface
and the vertices of the walk, respectively.

The paper is organized as follows: first we give a description of the model and the
technique. Then we present the results for cases 1 and 2 and compare them. We summarize
our findings in the conclusion section.

2. Model and the simulation technique

The model which we consider is a particular case of that studied by Orlandini et al (1999).
We consider an n-edge self-avoiding walk on the simple cubic lattice Z3. The vertices are
numbered i = 0, 1, . . . , n and we fix the 0th vertex at the origin. All vertices are constrained
to have non-negative z-coordinate, and the plane z = 0 is the plane at which adsorption can
occur.

The vertices i = 1, 2, . . . , n of the self-avoiding walk are randomly and independently
labelled with probability pp as A or with probability 1 − pp as B . The sites on the plane (Z2)

are numbered (i, j), i = −n,−n + 1, . . . , n, j = −n,−n + 1, . . . , n and are randomly and
independently labelled as A with probability ps or as B with probability 1 − ps .

We study two variations of this model: in the first case (which we shall refer to as case 1)
we examine the adsorption behaviour of a random copolymer whose A-monomers interact
with only the A-lattice sites on the surface. Let cn(vAA|χ1, χ2) be the number of n-edge
walks with these constraints, having a labelling χ1, and having vAA vertices labelled A in the
A-lattice sites of the plane z = 0 with the labelling, χ2. The partition function for a fixed
labelling is

Zn(α|χ1, χ2) =
∑
vAA

cn(vAA|χ1, χ2) eαvAA (2.1)

where vAA counts A-monomers that have hit an A-lattice site on the surface, and α = −ε/kBT

with T as the temperature, ε(<0) as the interaction energy of the self-avoiding walk with the
surface and kB as the Boltzmann constant. The quenched average free energy, κ̄(α), is

κ̄(α) = lim
n→∞〈n−1 log Zn(α|χ1, χ2)〉 (2.2)

where 〈· · ·〉 represents an average over the labellings χ1 and χ2. To the author’s knowledge,
there are no rigorous proofs regarding the existence of this limit or the temperature dependence
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of free energy. To investigate the possibility of an adsorption transition for this problem, we
have fixed the labelling of the walk and the surface and calculated the energy (the first derivative
of the free energy) at several fixed labellings. That is, we calculated

〈vAA(α|χ1, χ2)〉 =
〈∑

vAA
vAAcn(vAA|χ1, χ2) eαvAA∑

vAA
cn(vAA|χ1, χ2) eαvAA

〉
(2.3)

as a function of α and n for several fixed values of χ1 and χ2. We write 〈vAA(χ1, χ2)〉/n for
the mean fraction of A-vertices in the A-lattice sites of the surface averaged over all labellings
of the walk and the surface.

For the second case (which we shall refer to as case 2) we examine the adsorption
behaviour of a random copolymer whose A-monomers interact with the surface sites in a
non-preferential way, and the A-sites on the surface interact indiscriminantly with monomers
of the copolymer. Similar quantities are calculated in this case and then compared with case 1.
For example, the energy is calculated as

〈vA(α|χ1, χ2)〉 =
〈∑

vA
vAcn(vA|χ1, χ2) eαvA∑

vA
cn(vA|χ1, χ2) eαvA

〉
(2.4)

as a function of α and n for several fixed values of χ1 and χ2 where vA represents a visit to
the surface that involves an ‘A’-labelling either from the walk or from the surface. We write
〈vA(χ1, χ2)〉/n for the mean fraction of visits of the walk to the surface, which involve an
A-labelling either from the walk or from the surface, averaged over all labellings of the walk
and the surface.

The thermodynamic quantities in this study are calculated via multiple Markov chain
Monte Carlo methods (see Geyer (1991)), together with the pivot algorithm (see Lal (1969)),
to estimate the energy as a function of n and α and the heat capacity as a function of n
and α. In a typical multiple Markov chain simulation one samples at a variety of different
temperatures at the same time and ‘swaps’ configurations between different temperatures with
swap probabilities chosen so that the limit distribution of the process is the product of the
Boltzmann distributions at the individual temperatures. The calculations are carried out for
several (typically 20–40) different labellings of the walk and the surface. We have investigated
values of n up to 400.

Throughout the calculations, the labellings of the surface and of the walk are fixed. The
calculated quantities are averaged three times: once upon all conformations of the walk, then
over all labellings of the walk (χ1), and then over all labellings of the surface (χ2).

3. Results and discussion

In this section, we present the multiple Markov chain Monte Carlo (MMCMC) calculations
of thermodynamic functions of random copolymers interacting with random surfaces. The
main goals are to investigate the existence of a phase transition and to examine the effect
of dilution of interactive sites of the walk and of the surface on adsorption properties. We
also examine the effect of the details of the model (selective binding versus non-preferential
binding) on critical behaviour of random systems by comparing the properties such as the
adsorption location and the crossover exponent. Two distinct cases are considered: in the first
case (case 1), the A-vertices of the walk interact only with A-lattice sites on the surface. In
the second case (case 2), the A-vertices of the walk are interacting with the surface, and the
A-sites on the surface interact with the vertices of the walk. The second case may be more
difficult to realize experimentally but its comparison with case 1 offers insight into the possible
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Figure 1. The mean fraction of visits as a function of α for a random copolymer (pp = ps = 0.5)

of 50 (∗), 100 (×), 200 (+) and 400 (�) edges interacting with a random surface.

dependence of critical properties such as transition location and the crossover exponent on the
details of the model.

3.1. Adsorption of a random copolymer in a random surface: case 1

Figure 1 shows the α-dependence of the mean fraction of A-monomers that are visiting the
A-lattice sites on the surface, 〈vAA(α)〉

n
, when pp = ps = 0.5, for different values of n. For

small α, the values of 〈vAA(α)〉
n

are small and decrease as n increases. The curves rise over a
small range of α values and the rise becomes sharper as n increases. The asymptotic value
seems to be less than pp = ps = 0.5.

A similar trend is observed when pp = ps = 0.6, a value slightly higher than the
percolation threshold of the surface. This is the value of p (=0.583 for a square lattice)
at which an infinite cluster of active sites flow from one side of the surface to the other
(Stauffer and Aharony 1994) thus accommodating the adsorption of the whole length of the
active sites on the polymer. For this reason we expect that for p � pc, the asymptotic value of
〈vAA(α)〉

n
tends to unity in the case of adsorption of a homopolymer on a random surface. The

walks seem to be going from a desorbed state to an adsorbed state as α increases.
Figure 2 shows the corresponding behaviour for the heat capacity or C(α). The heat

capacity peaks become higher and narrower as n increases, consistent with a second-order
phase transition. We have checked this by examining histograms of the energy and see no
evidence for a two-peaked distribution at any values of α. A similar trend is observed when
pp = ps = 0.6 with larger peaks (in heights) and smaller locations for peak maxima. There
are no rigorous proofs regarding the existence of a phase transition in this case. These results
provide numerical evidence for an adsorption transition.

Figure 3 shows the α-dependence of 〈vAA(α)〉
n

for n = 50 for fixed ps = 0.6 (>pc, where
pc is the percolation threshold of the surface) and various values of pp = 0.5, 0.6, 0.7 and 1.0.
As pp increases, the value of α at which 〈vAA(α)〉

n
begins to increase rapidly (corresponding to

a peak in the heat capacity) grows smaller as expected. 〈vAA(α)〉
n

increases as pp increases, but
it tends to values smaller than pp or ps except for the case pp = 1 where the height of the
plateau tends to unity for larger values of α. Similar results are obtained when pp is fixed and
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Figure 2. The heat capacity C(α) versus α (case 2) for pp = ps = 0.5 for different values of n,
namely, 50 (×), 100 (�), 200 (∗) and 400 (+).
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Figure 3. The mean fraction of visits as a function of α for a random copolymer of 50 edges
interacting with a random surface when (pp = 0.5 and ps = 0.6) (∗), (pp = ps = 0.6) (�),
(pp = 0.7 and ps = 0.6) (+) and (pp = 1.0 and ps = 0.6) (×).

ps increases. This is interesting for two reasons: first it shows that 〈vAA(α)〉
n

depends on two
parameters (pp and ps). Secondly it exhibits the effect of the constraint of selective binding
on 〈vAA(α)〉

n
. This effect can be more carefully examined by removal of the constraint, which is

done in the next case (2).
Before we present thermodynamic results for case 2 and compare them with those of case 1,

we present a metric property of the model in this case, namely the root mean square of the
z-component of the walk (Z). This is a measure of how far from the surface the walk lies. If
Z is large, the walk is far from (off) the surface; if Z is small, the walk must be mainly lying
on the surface. In figure 4, α-dependence of Z is shown for different values of ps and pp. In
all cases, the walk seems to be going from the desorbed phase to an adsorbed phase. It can
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Figure 4. α-dependence of the root mean square of the z-component of the walk (Z) in case 1 for
(pp = 0.7 and ps = 0.6) (∗), (pp = ps = 0.6) (×) and (pp = ps = 0.5) (+) for n = 50.
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Figure 5. The mean fraction of visits (case 2) as a function of α for p = 0.5 for different values
of n, namely, 50 (∗), 100 (+), 200 (�) and 400 (×).

also be seen that in the case where pp = ps = 0.5, even for larger values of α,Z lies well
above the corresponding quantities for the cases with larger pp and ps values.

3.2. Adsorption of a random copolymer in a random surface: case 2

We now examine the effect of removal of constraint by discussing the thermodynamic
properties for the second model (case 2). Figure 5 shows the α-dependence of 〈vA(α)〉

n
when

ps = pp = 0.5 for different values of n. For small α the values of 〈vA(α)〉
n

are small and
decrease as n increases. The curves rise sharply over a small range of α values and the rise
becomes sharper as n increases. The asymptotic value is considerably larger compared to that
in the previous case (figure 1). This clearly exhibits the effect of constraint on the fraction of
adsorbed vertices. Since ps < pc, one does not expect this value to tend to unity.
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Figure 6. The heat capacity C(α) versus α for p = 0.5 for different values of n, namely, 50 (+),
100 (×), 200 (�) and 400 (∗).

A similar trend is observed when pp = ps = 0.6, a value slightly larger than the
percolation threshold of the surface. The walk seems to be going from a desorbed state to
an adsorbed state as temperature decreases. The asymptotic value of 〈vA(α)〉

n
tends to unity as

α increases. Once again, this is in sharp contrast with the corresponding results obtained in
case 1 (figure 3).

Figure 6 shows the α-dependence of the heat capacity when pp = ps = 0.5, for different
values of n. The heat capacity peaks become higher and narrower as n increases, consistent
with a second-order phase transition. We have checked this by examining histograms of the
energy and see no evidence for a two-peaked distribution at any values of α. A similar trend
is observed when pp = ps = 0.6, a value slightly higher than the percolation threshold of
the surface. The location of maxima of the peaks tend to smaller values of α as pp (=ps)

increases indicating that the adsorption location depends on the dilution of the interactive sites
of the walk and of the surface.

In figure 7 we compare the heat capacity for the two cases (1 and 2) for ps = 0.6 and
pp = 0.5 and 0.6. Once again two factors seem to be affecting the adsorption location and the
magnitude of fluctuations. The first one is the combination of the two parameters (pp and ps ),
and the second one is the role of the constraint. It can be seen that the adsorption location
(αc) depends on pp; as pp increases, αc decreases in both cases. Similar results are obtained
by fixing pp and increasing ps . An increase in ps shifts αc to smaller values. It seems, from
a comparison of the results for the two cases, that αc is also affected by the constraint of
selective binding; once it is removed, αc shifts to smaller values.

The heights of the peaks are also considerably different. The fluctuations in 〈vA(α)〉
n

seem
to be suppressed by the constraint of A-vertices interacting with A-sites. While for an infinite
size system both these peaks should diverge; the comparison of results for finite size systems
helps in understanding the effect of constraint on the properties of models of random systems.

To examine the effect of the selective binding constraint on the crossover exponent, φ,
the locations of the heat capacity peaks, αn have been plotted against n−φ for various values
of n for the two cases in figure 8. The three plots present data for (pp = ps = 0.5) obtained
for cases 1 and 2 as well as the case of pp = 1 while ps = 0.5. This is the case of a
homopolymer interacting with a random surface and is included as a reference. There are not
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Figure 7. The heat capacity as a function of α for cases 1 (+ for pc = 0.5 and × for pc = 0.6)
and 2 (� for pc = 0.5 and ∗ for pc = 0.6). For all these cases the data for ps = 0.6 and n = 50
are shown.
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Figure 8. The locations of the heat capacity peaks plotted against n−0.5 for ps = pp = 0.5 for
case 1 (∗), case 2 (+) and for case 2 when pp = 0.5 and ps = 1 (×).

enough data points to make an independent estimate of φ; therefore, we considered a value of
φ = 0.5 (Hegger and Grassberger 1994) similar to the case of adsorption of homopolymers
and periodic copolymers. A linear behaviour is observed in all cases providing support for
φ being about 0.5–0.52. It seems that the constraint in the model does not change the value
of φ to an easily discernible degree. Similar results are obtained for ps = pp = 0.6; so
φ does not seem to depend on the dilution of interactive sites either. This is similar to the
results we obtained for models where either the walk or the surface contained interactive
sites (Moghaddam and Whiltington 2002) and where φ seemed to be independent of p. At
that point, we performed the calculations for many values of p and examined the possibility
of p-dependence of the crossover exponent. Our results then did not provide evidence for
p-dependence of the crossover exponent as Sumithra and Baumgartner (1998) reported in
their work on adsorption of a homopolymer on a random surface (for p � 0.6). Also in this
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study, we do not observe any evidence for p-dependence of φ though we have performed the
calculations for only two values of p in close vicinity of the percolation threshold. If the
crossover exponent indeed depends on p, our data may not be precise enough to see this.

The self-avoiding walk model of adsorption of a random polymer onto a random surface
where selective binding is imposed (case 1) is a basic model for pattern recognition by
macromolecules. Adsorption implies that A-monomers ‘find’ A-lattice sites on the surface
and bind to them strongly. The results obtained in this work suggest that the parameters of
importance are the dilution of the interactive sites on the surface and the polymer as well as
the strength of interaction between the interactive site. These results also indicate a strong
dependence of adsorption location on the dilution of the interactive sites of the polymer and on
the surface or pp and ps . As pp and ps increase, adsorption occurs at smaller α (related to the
strength of the interaction energy). This can be of significance in designing polymers (surfaces)
capable of ‘recognizing’ patterns on surfaces (polymers) and binding to them strongly.

Comparison of the results for the two variants of the model suggests that certain critical
properties such as adsorption location depend on the details of the model such as the presence
of a constraint. Other properties, however, do not follow the same rule. For example, these
results provide support for φ being independent of the details of the model and for value of
φ being about 0.5 in the case of random copolymers interacting with a random surface. This
is in agreement with the findings of Hegger and Grassberger (1992) who performed extensive
computational studies to determine φ for the adsorption of a homopolymer and suggested the
notion of superuniversality of φ.

4. Conclusions

We have used Monte Carlo methods to investigate the thermodynamic properties of a
self-avoiding walk model of the adsorption of a random copolymer interacting with a random
surface. Two cases are considered: in the first case a random copolymer interacts selectively
with interactive sites on the random surface while in the second case the random copolymer
(the surface) interacts non-preferentially with sites on the random surface (monomers of the
random copolymer). We have observed second-order phase transitions in both cases. The
adsorption location depends on the dilution of the interactive sites or pp and ps in both models.

We have examined the effect of selective binding constraint on critical properties such
as adsorption location and the crossover exponent by comparing the results from the two
models we studied. Adsorption location changes as a result of implementing a constraint.
The crossover exponent seems to be independent of the details of the model as well as of the
dilution of the interactive sites of the walk and of the surface.
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